
 

 

CAM-AI: An Open-Source Artificial Intelligence Solution for False Alarm Reduction in Security 

Cameras 

Abstract: False alarms in security camera systems can lead to unnecessary disruptions and reduce 

the effectiveness of surveillance. The CAM-AI camera software addresses this issue by integrating 

advanced artificial intelligence (AI) capabilities with security cameras. This paper introduces CAM-

AI, highlighting its innovative approach to differentiating between harmless movements and 

genuine threats using a unique combination of motion detection and AI image classification. The 

project offers an open-source software solution, written in Python and accessible on GitHub, 

making it versatile and compatible with a range of devices from a Raspberry Pi to a powerful server 

PC running Debian Linux. CAM-AI's core capabilities include pre-trained recognition of humans, 

dogs, cats, cars, and other objects, ensuring accurate detection right from the installation. Further 

improvement of the reliability of the image classification can be achieved by specific training on 

the data from a specific camera. 

1. Common problems with security cameras and what CAM-AI can do to fix them 

1.1 Security cameras are prone to false alarms, especially in outdoor setups. Many cameras 

use motion detection to generate alarms. This works well with indoor setups (as long as 

you don’t have pets in your home) but is not very good outdoors. Pure motion detection 

registers irrelevant movements, such as leaves blowing in the wind, quickly moving clouds 

or animals passing by.  

CAM-AI uses a combination of motion detection and AI image classification1, thus 

eliminating false alarms. 

1.2 Some camera suppliers have recently added AI features to their products, mostly by 

opening the users’ cameras to their remote servers which perform all needed AI 

operations. The precision of these servers’ image classification is limited because they all 

work with standardized models2. Improving the models by training with customer data is 

not possible. 

CAM-AI does exactly this: The user may train his individual model on individual data from 

his camera, thereby significantly improving the quality of the predictions3. 

1.3 Many customers require their image and video data to remain on their own systems for 

data protection reasons. Sharing the data with some unknown server abroad for 

processing is not an option. In some countries, it is even illegal to move customer data to 

another server without the explicit permission of the user. 

Since CAM-AI is a Python-made web application, it offers a broad range of options for the 

installation of the server, according to the users’ needs: 

1.3.1 The easiest way is to create an account on CAM-AI’s cloud server 

(https://django.cam-ai.eu/accounts/register/). The server gets the video data from 

the users’ cameras and does all the processing. This includes for example alarm 

procedures such as sending emails. Data is safe on that server, it is located in the EU, 

but most of all it comes with state-of-the-art protection. All the user needs to run 

this solution is a browser and an internet connection. 

https://django.cam-ai.eu/accounts/register/


 

 

1.3.2 Users, who want or need their storage server within their own infrastructure, may  

e. g. install CAM-AI on a Raspberry Pi. This very small computer takes care of the 

storage as well as the logistics, the AI processing is done by the CAM-AI’s cloud 

server. Transfers to and from the server are performed using end-to-end encryption. 

The Raspberry Pi is operated by a browser via a web interface as well. 

1.3.3 Completely autonomous CAM-AI systems are set up on PCs running Debian Linux 

OS. No need to transfer images or videos beyond your own domain. Predictions are 

generated locally, local training requires the installation of a third-party plugin. 

2. Short introduction to AI image classification using CAM-AI 

2.1 How to get images with motion detection: 

Two times per second the motion detection pulls a sample image from the video stream 

and compares it with the last image. The system cuts out the areas that are different (i. e. 

the areas where some movement took place). This process is repeated every half second. 

The result is a sequence of images of every object that moves within the camera’s view. 

Here is an example of the resulting small images: 

 

At this point, the content of the images is unknown to the system and therefore it also is 

unknown whether the images are relevant for surveillance. This is where AI image 

classification is needed: 

2.2 How to analyze image content with AI: 

Each of these images now is processed by an AI software system called Convolutional 

Neural Network4 which supplies a set of 10 tags per image: 

 

As you might have guessed: The numbers between 0.0 and 1.0 represent the likeliness of 

ten different categories of objects being visible in each image. In this case, the result is 



 

 

very simple: There is a cat in each of the four images, but nothing else of relevance. No 

human, dog, bird, insect, car, truck, motorcycle, or bicycle, which are the other categories 

available in the standard setup. And because we are not interested in alarm emails 

showing cats sneaking across our yard, we configured the system to not trigger an alarm 

when spotting cats. This test was done using the standard model that comes with every 

new server installation and every new account on the cloud server. This model is good at 

detecting humans, cats, dogs, birds, or cars. However, there are many cases in real-life 

image classification that are not that simple. If you need more precision and reliability you 

need to go further: 

2.3 Going beyond the simple case with individual training: 

Let’s look at this example: Our standard model is sufficiently trained to recognize humans, 

cats, and dogs, but now a butterfly is flying by. The model has never seen this kind of 

butterfly before. But it has seen blurred images of men in dark working overalls with 

reflecting stripes on their pants and maybe with orange caps on their heads.  

 

 

So, the classification of the three pictures is no surprise: The Convolutional Neural 

Network detects a human near the steps, which is, of course, wrong. This sounds like a 

theoretical and rare problem, but it happens a lot with AI systems that are too simple. If 

you want to prevent these false alarms, you need to teach your system what this image 

contains by checkmarking the “Ins(ect)”-line for all three images. After the next training, 

the model will have learned that this butterfly is an insect. Generally speaking, individually 

trained models know the items and issues that are not a reason for alarms and thus 

significantly reduce the number of false alarms. 

2.4 Retraining the model: 

Once we collect a couple of images with things to learn (like the butterfly images above), 

we can launch the training process with one mouse click. Before we take a closer look at 

this process, let’s have a look at the following simplified sketch of a neural network: 

 



 

 

 

 

The image data is fed into a large grid of variables that is organized in layers (in this 

example: 6 layers, counted from left to right). Each layer consists of many cells (the light 

blue-grey points) that contain floating point numbers. Many of them are connected by a 

sophisticated pattern of relations, here represented by black lines. Each of these lines has 

a numerical value, the so-called weight. The weight explains the permeability of that line 

when a signal (image) is processed from left to right: A high weight results in the right cell 

getting a large portion of the value of the left cell, and a low weight reduces the 

permeability.  

This graphic illustration contains a couple of simplifications, the most important two are: 

A) The dimensions of real, useful neural networks are much larger than that of the one in 

this graphical representation. On the input side, we might (for example) have 150.528 

numbers (and not 9 like in our example) representing an image with 224 x 224 pixels and 

3 color channels per pixel (224 x 224 x 3 = 150.528). On the output side, the number of 

channels is 10 in real-life CAM-AI (not 4), one for each category to detect (humans, cats, 

cars, etc.). 

B) Our graphics don’t show a Convolutional Neural Network, but a simpler and smaller 

structure. Really capable neural networks have millions of weights. 

 

Now the training process is started by feeding the image into the first (leftmost) layer. 

Once this is done, the complete network (all the cells) automatically gets populated 



 

 

according to the weights that come with the black lines, from left to right. In the end, the 

last (rightmost) layer contains the prediction, meaning: The categories that the AI-system 

derived from the image data. Now the CAM-AI compares this resulting prediction with the 

tags the user (=teacher) attributed to this image and any error is fed back into the model's 

weights by a complex process called backpropagation5. This procedure is repeated many 

times with many images and their given tags and will improve the quality of the 

predictions. 

2.5 The learning curve: 

With the following graphic illustration, you can check the progress of a well-parameterized 

learning process:  

  

  

  

  

  

  

  

  

  

  

 

The red line indicates the percentage of tags correctly recognized. The green line indicates 

the percentage of completely correct predictions. Let’s see what this means to our three 

sample images from section 2.3: 

 

The model has obviously learned. The butterfly is no longer recognized as a human. The 

system is now sure about what that object is (values for “Ins” are all close to 1.0). We have 

reached the most important goal: No more false alarms from butterflies! 

Of course, this example represents a solution for many kinds of false alarms. 



 

 

 

Conclusion: CAM-AI offers an innovative, open-source solution to the persistent problem of false 

alarms in security camera systems. With smart motion detection combined with advanced AI 

capabilities (including individual camera training), the reliability of these systems is highly 

improved.  

Visit https://cam-ai.de to learn more about preventing false alarms and improving home or 

business security. 

 
Footnotes: 

 
1 Image classification is a computational task within the domain of computer vision, aimed at categorizing visual data 
into predefined classes. The fundamental principle involves the extraction of discriminative features from digital 
images and their subsequent mapping to distinct categories through machine learning algorithms. The process 
typically comprises a training phase, during which the algorithm learns patterns and features from a labeled dataset, 
and a testing phase, where the trained model is applied to unseen images for accurate classification. 
 
2 In the context of image classification, the term "model" refers to a computational representation or framework that 
has been trained to recognize and categorize objects or patterns within digital images. This model is essentially a 
mathematical abstraction that generalizes the relationships and features present in the training data to make 
predictions on new, unseen data. The process of building an image classification model involves training it on a labeled 
dataset. This dataset consists of images along with corresponding class labels, indicating the object or category each 
image belongs to (e.g., "cat," "dog," "car"). During training, the model learns to identify patterns and features that are 
characteristic of each class. The model's goal is to generalize from the training data, allowing it to correctly classify 
new, previously unseen images. 
 
3 In image classification, the term "prediction" refers to the output or inference made by a trained model when it is 
presented with a new, unseen image. The model analyzes the features and patterns within the input image and assigns 
it to one or more predefined classes or categories based on what it has learned during the training phase. 
 
4 A Convolutional Neural Network (CNN) is a specialized type of artificial neural network designed for processing and 
analyzing visual data, such as images and videos. CNNs have proven highly effective in tasks like image classification, 
object detection, and image recognition. 
 
5 Backpropagation, short for "backward propagation of errors," is a supervised learning algorithm used to train 
artificial neural networks, including Convolutional Neural Networks (CNNs). The primary objective of backpropagation 
is to minimize the error between the predicted output of the neural network and the actual target output by adjusting 
the weights of the network through gradient descent. 
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